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SUMMARY

The mathematical formulation of the dynamics of free liquid surfaces including the effects of surface tension is
governed by a non-linear system of elliptic differential equations. The major dif®culty of getting unique closed
solutions only in trivial cases is overcome by numerical methods. This paper considers transient simulations of
liquid±gas menisci in vertical capillary tubes and gaps in the presence of gravity. Therefore the CFD code FIDAP
7.52 based on the Galerkin ®nite element method (FEM) is used. Calculations using the free surface model are
presented for a variety of contact angles and cross-sections with experimental and theoretical veri®cation. The
liquid column oscillations are compared for numerical accuracy with a mechanical mathematical model, and the
sensitivity with respect to the node density is investigated. The ef®ciency of the numerical treatment of
geometric non-trivial problems is demonstrated by a prismatic capillary. Present restrictions limiting ef®cient
transient simulations with irregularly shaped calculational domains are stated. # 1998 John Wiley & Sons, Ltd.

Int. J. Numer. Meth. Fluids, 26: 485±495 (1998).
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1. INTRODUCTION

Fluid displacement in porous media, drop development and other technologies are strongly affected

by surface tension resulting from molecular forces at the phase interfaces. Both the meniscus shape

and the ¯uid motion itself are governed by these forces. Analytical approaches based on the Laplace±

Young equation lead to a non-linear system of elliptic differential equations having closed solutions

only in a few trivial cases which are not of practical interest. A feasible way to predict the meniscus

shape and its position is numerical treatment with the ®nite element method (FEM) because it can

easily accommodate irregular calculational domains and non-trivial boundary conditions which

generally accompany three-dimensional menisci. This method was shown to be particularly effective

for steady menisci in simple three-dimensional arrays of cylinders, spheres and cones forming

elementary types of porous media.1,2 The meniscus shape in polygonal capillaries in a gravity-free

environment was investigated with the ®nite difference method (FDM).3

This paper presents dynamic simulations of ¯uid menisci in straight vertical capillary tubes and

capillary gaps formed by parallel planes in a gravity environment using the Galerkin ®nite element

method. The time-dependent meniscus motion, being initially plane and below the assumed ®nal
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equilibrium position, is computed for contact angles W� 0� and 45� for a variety of cross-sectional

dimensions. The meniscus shape is discussed and the calculational domains are extended to non-

trivial cross-sections considering a prismatic capillary. The CFD code FIDAP 7.52, installed on an

SGI Challenge and an SGI Indy respectively, is used.

2. THEORY

Under dynamic conditions the free surface of a ¯uid in a capillary intersects the capillary wall,

forming a moving solid±¯uid±¯uid contact line. Owing to intermolecular forces, each interface is

characterized by the surface tension coef®cient, which gives in the equilibrium static contact angle

describing the wetting condition. Figure 1 illustrates the tensions occurring at the contact line. The

surface tension at curved menisci results in a local normal vector giving rise to a pressure step acting

on the meniscus. This pressure step causes various physical phenomena including forced liquid

motion in porous media and in thin channels. Without gravity this pressure step is constant across the

meniscus, in tubes and gaps causing the surface to be spherical and cylindrical respectively. In the

presence of gravity this is true only for capillaries.

The special case of vertical capillaries with constant cross-sectional area is considered here. As

illustrated in Figure 2, the equilibrium position is characterized by the balance of the gravity force FG

of the rising ¯uid mass and the capillary force FC � us cos�W�, with the length of the intersection line

u, the coef®cient of surface tension s2;3 � s and the contact angle W. The capillary rise h is

considered as the vertical distance between the base points of the menisci inside and outside the

capillary which are directly connected by the same ¯uid.

To maintain precise experimental repeatability, a completely wetting ¯uid exhibiting zero contact

angle is considered. To show that the computational technique works also for an incomplete wetting

¯uid, the case of W� 45� was additionally investigated. For vertical capillary tubes the governing

forces are

FC � s2pr cos�W�

and, with g the gravitational acceleration and r the mass density,

FG � pr2hrg � sr2prg ÿ 1

3
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Figure 1. Wetting ¯uid affecting a vertical wall (s1;2, s1;3,
s2;3, surface tensions; W, contact angle)

Figure 2. Capillary rise (b, gap width; r, tube radius; h,
capillary rise)
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The force balance at W� 0� gives for the capillary rise

h � 2sÿ r2rg � 2
3

r2rg

rrg
; �1�

whereas for W� 45� the capillary rise becomes
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���
2
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2
p ÿ 1�r2rg � 1

3
�
���
2
p
ÿ 1�2r2�2

���
2
p
� 1�rg

rrg
: �2�

For the capillary rise in a gap formed by two parallel vertical walls of length a, these forces are

FC � s2a cos�W�
and

FG � bharg � b2

2
arg ÿ b2

8 cos2�W� p 1ÿ W
90�

� �
ÿ sin�2W�

� �
arg:

Hence, for W� 0�,

h � 2sÿ �b2=2�rg � 1
8
pb2rg

brg
: �3�

The rising meniscus reaches the ®nal position after a free, damped oscillation. Assuming small

displacements of the liquid column, its dynamic behaviour is comparable with that of a linear

mechanical spring±damper±mass system, being a harmonic oscillator. The natural frequencies of the

damped and undamped systems, f and f0 respectively, are, with the damping coef®cient D,

f0 �
1

2p

��������
g

h

� �r
; f � f0

�����������������
�1ÿ D2�

p
: �4a; b�

This approach has usually proved adequate when the length of the ¯uid in the capillary is large

compared with the tube diameter; however, deviations from the expected behaviour have been

observed even when this condition is satis®ed.4 The ¯uid in a capillary is at one end bound by a free

meniscus where the velocity ®eld and the viscous and interial forces differ strongly from the assumed

Poiseuille ¯ow. This may affect the dynamics signi®cantly. As reported in the following sections, the

damping coef®cient assuming Poiseuille ¯ow is much lower than the computed motion shows.5 To

improve the mechanical model, the computed damping coef®cient may be used instead of Poiseuille

¯ow one. This coef®cient is obtained from the ratio of two consecutive amplitudes snÿ1 and sn:

D � x������������������
�x2 � p2�

q
; x � ln

snÿ1

sn

��� ���: �5�

3. EXPERIMENTAL

The experimental investigation of the capillary rise was performed for four capillary tubes with

d� 1�50, 1�67, 1�88 and 2�42 mm and four capillary gaps with b� 1�1, 1�4, 1�5 and 2�0 mm in

distilled water. The capillary rise was measured optically as shown in Figure 3. A beaker containing

distilled water is movable by a vertical linear bearing. Exact positioning with simultaneous

determination of the distance moved was performed by a micrometer. The wetting ¯uid rises in the

capillary when the latter is positioned and ®xed in the beaker as shown. The ¯uid column takes only a

few seconds to reach the steady state position after an initial damped oscillation. To get the ¯uid

completely wetting, the glass pieces were degreased with acetone, re®ned with chromic sulphuric
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acid and ®nally rinsed several times with distilled water. Using the micrometer, the base points of

both menisci and the cross-hair were zeroed. The distance moved represented the capillary rise.

The tube and gap dimensions were determined using a microscope. The relative deviation between

the inner tube diameters at both surface ground sides was found to be Db=b4 2%. The deviation of

the gap width was Db=b4 3%. Only the inner range of approximately 20 mm of the 40 mm long gap

walls could be used for the determination of the capillary rise, because this regions remains nearly

unaffected by the open gap ends where a meniscus fall occurs. The relative measurement error was

determined to be Dh=h� 3�5%, mainly caused by the irregular capillary shapes mentioned above, by

the meniscus curvature in the beaker (pressure step) and by deviations in the optical focusing.

4. CALCULATIONS

4.1. Finite element approach

Simulations of moving ¯uids bound partly by a free surface, including the effects of surface

tension, may be carried out in FIDAP 7.52 using the free surface model. Such phase change

con®gurations of immiscible ¯uids are mathematically described by the Navier±Stokes equations

with additions to include the kinematics and the interfacial tension. These equations were solved with

the segregated solver and the backward Euler time integration scheme.

The simulation was carried out transiently, requiring higher computational cost but improving the

convergence characteristics signi®cantly. The ¯uid was assumed to be a Newtonian one and

incompressible, with the free surface being initially speci®ed to be plane and positioned below the

assumed ®nal position. The computational domain involved only the rising ¯uid, neglecting the

gaseous phase. At the contact line the slip condition was imposed. In the case of zero contact angle a

severe convergence problem occurs, because this boundary condition and the node location of the

corner elements are mutually exclusive. This problem was overcome by the use of quadratic

elements, making the mathematical formulation more ¯exible but leading to a more complex

mathematical model. The following parameters were used for the simulations: r � 998�4 kg mÿ3,

g � 9�81 m sÿ2, s � 0�0725 N mÿ1, Z � 0�001 Pa s (Z is the dynamic viscosity).

Figure 3. Con®gurations for measuring capillary rise in tubes
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4.2 Dynamic simulation of capillary rise in tubes

To gain experience for future, for more complex problems, the simulations of capillary tubes were

carried out three-dimensionally. As illustrated in Figures 4 and 6, the z-displacement of the inner

surface node is taken as the capillary rise. Because of the element topology in the case of W� 45�, this

node is not placed exactly on the apex; however, assuming a spherical meniscus, the deviation in the

z-direction remains less than 1% and need not be taken into account.

Tending towards the equilibrium state, initially the ¯uid near the surface moves, oscillating to

shape the meniscus, as Figures 5 and 7 reveal. Subsequently the complete liquid column oscillates

damped to the ®nal equilibrium position characterized by a much lower frequency because of the

larger ¯uid mass involved but driven by the same capillary force. It is observed that the damping

coef®cient increases with decreasing diameter and decreasing contact angle.

Figure 4. FE model, d� 1�88 mm, W� 0� Figure 5. Computed z(t)-displacement

Figure 7. Computed z(t)-displacementFigure 6. FE model, d� 1�88 mm, W� 45�
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Convergence instability occurs when attempting to increase the time steps substantially after

attenuation of the meniscus oscillation. This numerical phenomenon caused up to 20,000 small time

steps and an unexpectedly high computational time for the complete simulation, especially in the case

of W� 0�. Consequently, only two capillary tubes were simulated for that case. The case of W� 45�

was additionally simulated because of a smaller number of elements and element distortions,

resulting in faster simulations. For the tube with d� 2�42 mm the CPU requirements were tsim� 16�6
CPU hours (case W� 45�) and tsim� 179�5 CPU hours (case W� 0�). Although this is a simple

problem in terms of the geometry and physics, the approach is general and may be extended to more

complex simulations.

Serious convergence problems occurred when trying to reduce the domain of a semi-cross-section

discretized with axisymmetric elements owing to their highly non-linear mathematical formulation.

4.3. Dynamic simulation of capillary rise between parallel vertical walls

A two-dimensional ®nite element model was used to simulate the capillary rise in gaps between

parallel vertical walls. This reduced model required much less simulation time, in the range of

tsim� 4±8 CPU hours.

Figure 8 shows the surface node motion. The meniscus performs qualitatively the same dynamics

as for tubes. Differences from the simulations above exist in that the initial meniscus oscillation is

more damped than in tubes.

4.4. Discussion of results

The values for the capillary rise in tubes are summarized in Figure 9. For a wetting ¯uid with

W� 0� the values obtained by the FEM are 3% lower than those obtained by equation (1). The

deviation between the numerical and measured values is 3%, being well within the range of

maximum measurement deviation. In the case of an incomplete wetting ¯uid characterized by

W� 45�, the values obtained by the FEM are 2% higher than those obtained by equation (2).

The values for the capillary rise in gaps are summarized in Figure 10. The values obtained by the

FEM and by equation (3) differ by less than 1�8%, with lower numerical values than the tube

simulation. The values obtained by the FEM and by experimental investigations differ by 3�5%, also

Figure 8. Computed z(t)-displacement for b� 1�10 mm
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being within the range of maximum measurement deviation. In both cases the simulation results are

in good agreement with the measurements and theory.

The dynamic behaviour is discussed on the basis of the natural frequencies summarized in Table I.

It is found that the theoretical natural frequencies of the undamped system given by equation (4a) are

up to 26% higher than the computed values. Using the computed damping coef®cient in equation

(4b), the natural frequencies decrease but signi®cant differences of up to 25% remain.

Figure 9. Capillary rise in tubes, W� 0� (upper curve) and W� 45� (lower curve)

Figure 10. Capillary rise in gaps, W� 0�
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This manifests the model defects reported by Tilton.4 On the other hand, the very high number of

time steps required for reasonable convergence may lead to a numerical problem. More investigations

are necessary to clarify this result, including experimental work. Considering the defects of the model

for comparison, this result is taken as con®rmation of the simulation.

4.5. Mesh re®nement

The simulation was repeated for one capillary gap using a re®ned mesh to investigate the solution

stability. Figure 11 depicts both meshes and the results.

This modi®cation decreased the capillary rise and the natural frequency of column oscillation by

about 1�5% and 3% respectively. These deviations are comparably small, so the realized coarse

element mesh is considered to be stable for a wide range of practical problems and may be used for

fast initial simulations.

4.6. Meniscus curvature

The steady state shape of free surfaces tends to an energy minimum with respect to the

gravitational potential and the surface energy. This section considers the meniscus curvature of a

completely wetting ¯uid in capillary gaps. In the absence of gravity the magnitude of the curvature

radius has to be constant, causing a semicylindrical meniscus.

In Figure 12 a circular approach formed by the intersection nodes and the base point nodes, by all

computed node positions themselves and the theoretical semicylindrical meniscus are depicted. The

Table I. Natural frequencies of column oscillation

W� 45� W� 0�

d� 1�88 mm d� 2�42 mm d� 1�88 mm d� 2�42 mm

Equations 4(a, b), 5 4�58 Hz 5�27 Hz 3�72 Hz 3�97 Hz
FEM 3�48 Hz 3�98 Hz 2�97 Hz 3�41 Hz
Deviation 24�0% 24�5% 20�2% 12�23%

Figure 11. Node density dependence for solution variables of case b� 2 mm
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corner positions are zeroed. Obviously, use of the FEM leads to a circular meniscus with larger radius

than theoretically assumed. If the node density is increased in both dimensions, the meniscus tends to

be more semicylindrical. Note that small elements near the intersection line cause large defects and

destabilize the solution, limiting the node density to resolve physical details near the contact line. An

additional simulation with b� 1�1 mm resulted in a qualitatively identical curvature. To investigate

the in¯uence of gravity, a capillary closed at the bottom was modelled in a gravity-free environment.

The resulting meniscus shape varied only slightly, indicating that the meniscus shape in capillaries is

independent of gravitational forces.

4.7. Dynamic simulation of capillary rise in a capillary of rectangular cross-section

Besides the special cases discussed above, in the focus of scienti®c and practical interest are ¯uid

motions in channels of variously shaped cross-sections. In this section the dynamic rise in a

rectangular capillary with an aspect ratio of two is considered (Figure 13). To minimize the

computation time, the contact angle was set to W� 45�.
Signi®cant initial and main oscillations are also observed for this case (Figure 14). In contrast with

the simulations above, the initial oscillation is composed of more than one harmonic oscillation. As

Figure 12. Meniscus curvature in a capillary gap with b� 2 mm

Figure 13. FE model of a prismatic capillary
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shown in Figure 15, the contact angles reach their steady values ®rst, resulting in a force imbalance

and initiating the initial meniscus oscillation.

5. CONCLUSIONS

The power of the ®nite element method for predicting and analysing transient meniscus

con®gurations without substantial geometrical and physical simpli®cations has been demonstrated.

Good agreement with theoretical predictions and experiments (with a maximum deviation of 3%)

was found in the numerical determination of the capillary rise in tubes and gaps. Stable solutions

require decreased convergence limits if large element distortions occur. This restricts re®nements of

the structured mesh to resolve details near the contact line. However, mesh re®nement affects the

dynamics and the capillary rise only slightly, allowing coarse meshes to be a good basis for

qualitative and quick simulations.

Figure 14. Computed z(t)-displacement of the surface node

Figure 15. Meniscus shape at various stages of initial phase
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The initially plane meniscus oscillates much faster to reach the equilibrium position than the liquid

column does, as qualitatively con®rmed by experiments. The frequency of the oscillating ¯uid

column differed from the mechanical model, which may be caused by defects of the mechanical

model. One focus of further experiments should be the veri®cation of the column frequency. It could

be manifested that the shape of the meniscus in capillary gaps is cylindrical and independent of

gravitational forces. Generally the numerical accuracy may be improved by increasing the node

density but it is limited by increasing element deformations in the corner region resulting in

convergence problems.

The presented transient simulations on basic capillaries based on a commercial CFD code may be

extended to capillaries with more complex cross-sections when large distortions do not occur.

Nevertheless, considering the potential of this approach, it seems to be a good basis for handling a

wide range of scienti®c and engineering problems in future simulations.
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